Beranda > geometri, rumus math > Mencari rumus volume bola

Mencari rumus volume bola

 

Mungkin kita bertanya-tanya. Sebenarnya dari mana asal rumus bola? Mengapa rumus untuk volume bola sama dengan

 

V= \frac{4}{3} \pi r^3

 

Lalu bagaimana mendapatkan nilai \frac{4}{3}. Sebenarnya rumus bola ini didapatkan dari mana? Tentunya, bagi siswa atau mahasiswa yang sudah tahu mengenai integral, sudah pasti akan mengetahui tentang hal ini. Tentu, hal yang bukan lagi menarik bagi mereka yang sudah mengetahuinya. Dengan menggunakan konsep volume benda putar yang dicari dengan menggunakan integral, akan didapatkan suatu rumus volume bola seperti yang disebutkan tadi.

 

Perhatikan persamaan lingkaran bagian atas yang diberikan di bawah ini

Suatu persamaan lingkaran bisa kita tuliskan menjadi dua fungsi. Tentunya masih ingat mengenai persamaan lingkaran. Persamaan umum lingkaran dengan pusat di (0,0) adalah

 

x^2+y^2=r^2, \qquad dengan r adalah jari-jari lingkaran.

 

Persamaan itu bisa kita tuliskan dan bisa kita bagi menjadi 2. Yaitu lingkaran bagian atas dan lingkaran bagian bawah. Untuk persamaan lingkaran bagian atas, perhatikan persamaan berikut ini

 

y= \sqrt{r^2-x^2}

 

Untuk persamaan lingkaran yang bagian bawah yaitu

 

y=- \sqrt{r^2-x^2}

 

Untuk gambar di atas, adalah persamaan lingkaran bagian atas. Persamaannya yaitu y= \sqrt{r^2-x^2}

 

Untuk mencari volume bola, kita akan memutar setengah lingkaran tersebut. Coba bayangkan, jika setengah bola tersebut diputar 360^{ \circ} dengan sumbu porosnya yaitu sumbu x. Benda apa yang akan terbentuk? Benda yang akan terbentuk adalah sebuah bola dengan jari-jari sama dengan jari-jari lingkaran.

 

Lalu bagaimana mencari volume benda putarnya? Masih ingat kan mengenai mencari volume benda putar untuk fungsi f(x) dan diputar terhadap sumbu x. Bagi yang belum pernah belajar hal ini. Bisa dipelajari pelan-pelan di sini.

 

Volume benda putar untuk f(x) adalah

 

\pi \int \limits_{a}^{b} (f(x))^2 \, dx

 

Untuk mencari volume bola. Setengah lingkaran tersebut kita pandang sebagai f(x) dan untuk nilai a dan b, a=-r, \quad b=r

 

Perhitungannya sebagai berikut:

 

V= \pi \int \limits_{-r}^{r} r^2-x^2 \, dx

V= \pi [r^2x- \frac{1}{3}x^3]_{-r}^{r}

V= \pi [(r^3- \frac{1}{3}r^3)-(-r^3+ \frac{1}{3}r^3)]

V= \pi \frac{4}{3}r^3

 

Bentuk terakhir adalah rumus untuk mencari volume bola yang sudah kita kenal sejak SMP. Bahkan SD juga ada yang sudah mendapatkannya.

Jadi, dengan menggunakan integral. (volume benda putar), kita bisa dengan mudah menemukan rumus-rumus untuk menghitung volume bola, volume kerucut, volume tabung atau volume benda-benda ruang lengkung yang lain.

 

Tulisan Terbaru :

 

 

About these ads
Kategori:geometri, rumus math
  1. 11 Mei 2013 pukul 9:08 PM | #1

    trim bangeeeeeeeeeeeeeet

  2. irfan
    3 Oktober 2012 pukul 11:50 AM | #2

    bagaimana cara mengitung volume bola asli dan volume benda bola dengan tidak formal

    • 5 Oktober 2012 pukul 10:30 AM | #3

      bagaimana ya.. belum kepikiran.. kalo lingkaran kan bisa dipotong juring, kemudian ditempelkan mendekati bentuk persegi panjang.. .
      kalau bola?
      kapan-kapan mungkin saya mau bahas ini.. .

  3. rIRIS
    1 Juli 2012 pukul 8:58 AM | #4

    terima kasih atas sharing pengetahuannya.

  4. 8 November 2010 pukul 7:26 PM | #5

    Silahkan di share ilmunya…

  5. putry erika utami
    8 November 2010 pukul 3:26 PM | #6

    owh…..
    terima kasih atas bantuannya
    dengan ada nya ini saya lebih mudah belajar..
    terima kasih….

  1. No trackbacks yet.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 204 pengikut lainnya.

%d bloggers like this: