Beranda > bukti > Ketaksamaan penting untuk pembuktian

Ketaksamaan penting untuk pembuktian

  

Beberapa ketaksamaan penting di dalam melakukan pembuktian matematika. Khususnya pembuktian mengenai limit. Pembuktian limit epsilon delta adalah pembuktian yang tidak mudah.

Pembuktian ini perlu latihan banyak dan pengalaman. Semakin sering kita menemui soal-soal pembuktian limit epsilon delta ini, semakin muah bagi kita untuk membuktikannya.

Pembuktian limit epsilon delta terikat dengan suatu tanda ketaksamaan. Oleh karena itu, di sini akan diberikan beberapa ketaksamaan yang cukup penting dan sering digunakan pada pembuktian limit. Untuk dimensi 2 maupun dimensi 3.

 

Ketaksamaan segitiga. Tentunya sudah mengetahui betul mengenai ketaksamaan yang satu ini. Bentuk ketaksamaan segitiga adalah

  

\mid x+y \mid \le \mid x \mid + \mid y \mid

 

Pengembangan dari ketaksamaan segitiga berikut ini juga penting.

 

\mid x-y \mid \le \mid x \mid + \mid y \mid

 

\mid \mid x-y \mid \mid \le \mid x-y \mid

  

Pada dimensi 3. Bentuk fungsi yang melibatkan x dan y. maka kita akan sering menggunakan ketaksamaan berikut ini untuk membuktikan limit dengan epsilon delta.

   

\mid x \mid \le \sqrt{x^2+y^2}

dan

 

\mid y \mid \le \sqrt{x^2+y^2}

 

Bentuk-bentuk ketaksamaan seperti ini seharusnya  diingat betul. Karena akan sering dipakai. Ketaksamaan itu sebenarnya banyak sekali. Dimulai dari ketaksamaan segitiga, ketaksamaan Cauchy-Schwartz dan ketaksamaan-ketaksamaan yang lainnya. Beberapa ketaksamaan yang umum dan sering terdengar akan kami tuliskan seperti berikut ini :

 

 

Pertidaksamaan AM-GM

(Arithmetic means dan Geometric means). Bentuk pertidaksamaannya sebagai berikut :

\sqrt{ab} \le \frac{a+b}{2}

 

Dan juga dikembangkan ke Pertidaksamaan HM-AM-GM

(harmonic means, Arithmetic means dan Geometric means). Seperti berikut :

 

\frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2}

 

 

Pertidaksamaan Cauchy-Schwarz

Bentuk ketaksamaannya sebagai berikut :

(ax+by+cz)^2 \le (a^2+b^2+c^2)(x^2+y^2+z^2)

 

 

Pertidaksamaan Bernoulli

Bentuk pertidaksamaan Bernoulli seperti berikut :

(1+x)^n \ge 1+nx

Dengan n adalah sebarang bilangan asli.

Ketaksamaan-ketaksamaan tersebut adalah yang paling sering muncul. Jadi, supaya diketahui oleh pembaca. Meskipun tidak dihafalkan.

Bukti-bukti dari ketaksamaan-ketaksamaan tersebut bisa dilihat dipostingan-postingan yang lainnya.

 

Tulisan Terkait : Pertidaksamaan AM-GM, Pertidaksamaan Cauchy-Schwarz, Ketaksamaan Segitiga, Pertidaksamaan

 

Tulisan Terbaru :

 

Kategori:bukti
  1. Belum ada komentar.
  1. No trackbacks yet.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: